

Unit Outline (Higher Education)

Institute / School:	Institute of Health and Wellbeing		
Unit Title:	APPLIED BIOMECHANICS		
Unit ID:	EXSCI2008		
Credit Points:	15.00		
Prerequisite(s):	(EXSCI1701)		
Co-requisite(s):	Nil		
Exclusion(s):	Nil		
ASCED:	010913		

Description of the Unit:

This unit enables students to apply mechanical principles from the prerequisite unit to the understanding of efficient movement in a range of specific sporting, recreational and workplace situations. Qualitative analysis modelling, charting, quantitative analysis, photographic, two-dimensional video, force, acceleration and electromyography measurement procedures are used.

Work Experience:

No work experience: Student is not undertaking work experience in industry.

Placement Component: No

Supplementary Assessment: Yes

Where supplementary assessment is available a student must have failed overall in the Unit but gained a final mark of 45 per cent or above, has completed all major assessment tasks (including all sub-components where a task has multiple parts) as specified in the Unit Description and is not eligible for any other form of supplementary assessment

Course Level:

Level of Unit in Course	AQF Level of Course					
Level of onit in Course	5	6	7	8	9	10
Introductory						

Level of Unit in Course	AQF Level of Course					
	5	6	7	8	9	10
Intermediate			~			
Advanced						

Learning Outcomes:

Knowledge:

- **K1.** Illustrate how the biomechanical principles of human movement are applied in a variety of exercise and sport settings to analyse movement, improve technique and prevent injury.
- **K2.** Discuss the processes of conducting qualitative and quantitative biomechanical analyses of movement by identifying the factors that govern efficient human movement patterns.
- **K3.** Explain the patterns of temporal, kinematic and kinetic variables that are commonly assessed by clinical gait analyses.
- **K4.** Critically appraise the electromyographic, kinematic and kinetic changes that occur with skill acquisition.
- **K5.** Identify and explain the role of fluid mechanics in sports technique and equipment design.
- **K6.** Compare and contrast the function and limitations of various biomechanical equipment.

Skills:

- **S1.** Collect and interpret biomechanical data in a variety of contexts using widely accepted equipment.
- **S2.** Develop proficiency in retrieving information, and communicating about biomechanical analysis of human movement
- **S3.** Critically review current biomechanical literature and present a clear, coherent report of the findings.
- **S4.** Solve kinematic and kinetic problems by calculate biomechanical parameters using established formulae and equations.
- **S5.** Work effectively in a group setting by efficiently planning and conducting the group projects.

Application of knowledge and skills:

- **A1.** Design, conduct and present a group research project on an applied biomechanics topic.
- **A2.** Interpret the results of research investigations and determine the applications in real-world contexts.
- **A3.** Explore and implement the use of biomechanical equipment in a variety of contexts.

Unit Content:

Topics may include:

- Applied biomechanical principles in a variety of exercise and sports settings;
- Qualitative and quantitative biomechanical analysis;
- Review of biomechanical literature and advancements;
- Equipment familiarisation;
- Data collection;

• Gait analysis.

Learning Task and Assessment:

Learning Outcomes Assessed	Assessment Tasks	Assessment Type	Weighting
S1, S2, S4, S5, A1-3.	Attendance and participation in laboratory sessions to complete formative assessments of practical skills.	Ongoing formative assessments	Satisfactory/Unsatisfactory
S2, S3.	Review of theoretical material, including reviewing relevant biomechanics literature.	Review of literature paper	15-25%
K2, K6, S2, S5, A1, A2, A3.	Development, conduct and presentation of an applied biomechanics group project.	Group project including presentation of results	25-40%
K1-6, S4, A2.	Review of theoretical material presented throughout the course.	Final Test	40-60%

Alignment to the Minimum Co-Operative Standards (MiCS)

The Minimum Co-Operative Standards (MiCS) are an integral part of the Co-Operative University Model. Seven criteria inform the MiCS alignment at a Course level. Although Units must undertake MiCS mapping, there is NO expectation that Units will meet all seven criteria. The criteria are as follows:

- 1. Co-design with industry and students
- 2. Co-develop with industry and students
- 3. Co-deliver with industry
- 4. FedTASK alignment
- 5. Workplace learning and career preparation
- 6. Authentic assessment
- 7. Industry-link/Industry facing experience

MiCS Course level reporting highlights how each Course embraces the principles and practices associated with the Co-Operative Model. Evidence of Course alignment with the MiCS, can be captured in the Course Modification Form.

MICS Mapping has been undertaken for this Unit No

Date:

Adopted Reference Style:

APA

Refer to the library website for more information

Fed Cite - referencing tool